a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes
↳ QTRS
↳ DependencyPairsProof
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes
A__ZPRIMES → A__NATS(s(s(0)))
MARK(filter(X1, X2, X3)) → MARK(X1)
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(filter(X1, X2, X3)) → MARK(X2)
A__NATS(N) → MARK(N)
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(s(X)) → MARK(X)
A__ZPRIMES → A__SIEVE(a__nats(s(s(0))))
MARK(sieve(X)) → A__SIEVE(mark(X))
MARK(nats(X)) → MARK(X)
MARK(zprimes) → A__ZPRIMES
A__SIEVE(cons(s(N), Y)) → MARK(N)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(sieve(X)) → MARK(X)
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
A__ZPRIMES → A__NATS(s(s(0)))
MARK(filter(X1, X2, X3)) → MARK(X1)
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(filter(X1, X2, X3)) → MARK(X2)
A__NATS(N) → MARK(N)
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(s(X)) → MARK(X)
A__ZPRIMES → A__SIEVE(a__nats(s(s(0))))
MARK(sieve(X)) → A__SIEVE(mark(X))
MARK(nats(X)) → MARK(X)
MARK(zprimes) → A__ZPRIMES
A__SIEVE(cons(s(N), Y)) → MARK(N)
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(sieve(X)) → MARK(X)
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
A__ZPRIMES → A__NATS(s(s(0)))
MARK(filter(X1, X2, X3)) → MARK(X1)
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(filter(X1, X2, X3)) → MARK(X2)
A__NATS(N) → MARK(N)
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(s(X)) → MARK(X)
A__ZPRIMES → A__SIEVE(a__nats(s(s(0))))
MARK(sieve(X)) → A__SIEVE(mark(X))
MARK(nats(X)) → MARK(X)
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(zprimes) → A__ZPRIMES
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
MARK(sieve(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__ZPRIMES → A__NATS(s(s(0)))
MARK(filter(X1, X2, X3)) → MARK(X1)
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(filter(X1, X2, X3)) → MARK(X2)
MARK(s(X)) → MARK(X)
A__ZPRIMES → A__SIEVE(a__nats(s(s(0))))
A__SIEVE(cons(s(N), Y)) → MARK(N)
MARK(zprimes) → A__ZPRIMES
A__FILTER(cons(X, Y), s(N), M) → MARK(X)
Used ordering: Combined order from the following AFS and order.
A__NATS(N) → MARK(N)
MARK(nats(X)) → A__NATS(mark(X))
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(sieve(X)) → A__SIEVE(mark(X))
MARK(nats(X)) → MARK(X)
MARK(sieve(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
[filter3, AFILTER3, afilter3] > 0
[zprimes, azprimes] > AZPRIMES > s1
[zprimes, azprimes] > AZPRIMES > 0
filter3: [3,1,2]
afilter3: [3,1,2]
zprimes: multiset
AFILTER3: [3,1,2]
AZPRIMES: multiset
0: multiset
s1: [1]
azprimes: multiset
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
mark(0) → 0
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(sieve(X)) → a__sieve(mark(X))
mark(s(X)) → s(mark(X))
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__nats(N) → cons(mark(N), nats(s(N)))
mark(nats(X)) → a__nats(mark(X))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__zprimes → zprimes
mark(zprimes) → a__zprimes
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
MARK(filter(X1, X2, X3)) → A__FILTER(mark(X1), mark(X2), mark(X3))
MARK(sieve(X)) → A__SIEVE(mark(X))
MARK(nats(X)) → MARK(X)
A__NATS(N) → MARK(N)
MARK(nats(X)) → A__NATS(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
MARK(sieve(X)) → MARK(X)
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
MARK(nats(X)) → MARK(X)
A__NATS(N) → MARK(N)
MARK(nats(X)) → A__NATS(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
MARK(sieve(X)) → MARK(X)
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(sieve(X)) → MARK(X)
Used ordering: Combined order from the following AFS and order.
MARK(nats(X)) → MARK(X)
A__NATS(N) → MARK(N)
MARK(nats(X)) → A__NATS(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
[MARK1, ANATS1] > 0
[azprimes, zprimes] > [sieve1, s, asieve1] > 0
ANATS1: [1]
sieve1: [1]
zprimes: multiset
MARK1: [1]
0: multiset
s: []
asieve1: [1]
azprimes: multiset
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
mark(0) → 0
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(sieve(X)) → a__sieve(mark(X))
mark(s(X)) → s(mark(X))
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__nats(N) → cons(mark(N), nats(s(N)))
mark(nats(X)) → a__nats(mark(X))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__zprimes → zprimes
mark(zprimes) → a__zprimes
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(nats(X)) → MARK(X)
A__NATS(N) → MARK(N)
MARK(nats(X)) → A__NATS(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(nats(X)) → MARK(X)
MARK(nats(X)) → A__NATS(mark(X))
Used ordering: Combined order from the following AFS and order.
A__NATS(N) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
[azprimes, asieve, sieve, zprimes] > [nats1, anats1] > 0
[azprimes, asieve, sieve, zprimes] > s > 0
zprimes: multiset
0: multiset
asieve: []
s: []
sieve: []
nats1: [1]
anats1: [1]
azprimes: multiset
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
mark(0) → 0
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(sieve(X)) → a__sieve(mark(X))
mark(s(X)) → s(mark(X))
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__nats(N) → cons(mark(N), nats(s(N)))
mark(nats(X)) → a__nats(mark(X))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__zprimes → zprimes
mark(zprimes) → a__zprimes
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A__NATS(N) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
MARK(cons(X1, X2)) → MARK(X1)
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(cons(X1, X2)) → MARK(X1)
[MARK1, cons1]
MARK1: multiset
cons1: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
a__filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
a__filter(cons(X, Y), s(N), M) → cons(mark(X), filter(Y, N, M))
a__sieve(cons(0, Y)) → cons(0, sieve(Y))
a__sieve(cons(s(N), Y)) → cons(s(mark(N)), sieve(filter(Y, N, N)))
a__nats(N) → cons(mark(N), nats(s(N)))
a__zprimes → a__sieve(a__nats(s(s(0))))
mark(filter(X1, X2, X3)) → a__filter(mark(X1), mark(X2), mark(X3))
mark(sieve(X)) → a__sieve(mark(X))
mark(nats(X)) → a__nats(mark(X))
mark(zprimes) → a__zprimes
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__filter(X1, X2, X3) → filter(X1, X2, X3)
a__sieve(X) → sieve(X)
a__nats(X) → nats(X)
a__zprimes → zprimes